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SUMMARY

A previous analysls for turbulent heat transfer and flow in tubes
was generaslized and epplied to an annulus with various eccentricities.
Expressions for eddy diffusivity which were verified for flow and heat
transfer in tubes were assumed to epply in general slong lines normal
to a wall. Velocity distributions, wall sheer-stress distributions,
and friction factors, as well as wall heat-transfer distributions, wall
temperature distributions, and average heat-transfer coefficients, were
calculated for an annulus having a radius ratio of 3.5 at various
eccentricities.

INTRODUCTION

Most of the existing analyses for turbulent flow and heat transfer
in passages have been confined to circular tubes or perallel plates
(refs. 1 to 5). These passages have been analyzed extensively because
of their lmportence in technical spplications and because their simplic-
ity makes them amensble to analysis.

In recent years the problems associated with the use of odd-shaped
rassages in heat exchangers have become important. In reference 6, tem-
perature distributions for rectangular and triangular ducts were calcu-
lated by using experimental velocity distributions and average heat-
transfer coefficients. No attempt was made to calculate the wvelocity
distributions or heat-transfer coefficients. Some work on the calcula-
tlon of the velocity and shear-stress distributions in corners is re-
ported in reference 7.

As a part of a general investlgation of heat transfer and flow in
passages of various shapes belng conducted at the NACA Lewls laboratory,
the eccentric annulus was analyzed. The methods used in references 4
and 5 for calculating the heat transfer and friction in tubes were ex-
tended and applied to annuli having various eccentricities. The methods
used herein should be general enough to be aspplied to passages having
various other cross sections.
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BASIC EQUATIONS AND ASSUMPTIONS

The differential equations for shear stress and heat transfer can
be written in the following form:

= (u+pe) T (1)
g = ~ (k + pgepep) %;—’- (2)

vhere € and €, are the eddy diffusivities for momentum and heat
transfer, respectlively, the values for which are dependent upon the
amount end kind of turbulent mixing at a point. In these equations
y 1s taken as the perpendlcular distance from the wall. Eguations
(1) end (2) can be considered as definitions of e and ey. They
can be written in dimensionless form as

Ik ,e e | ()
0 \Mo = Po Mo/Po) ayT
a k 1 p %p . e \att
== {5+ = o (4)
%o (ko Pro P Op Ko/ Po) dy*

where the subscript 0 refers to values at a wall. All symbols are de-
fined in appendix B.

Expressions for eddy diffusivity. - In order to use equations (3)
and (4), the eddy diffusivity ¢ must be evaluated for each portion of
the flow. It is assumed, as in references 4 and 5, that in the region
at a distance from the wall the mechanism for turbulent transfer is de-
pendent only on the velocitles in the vicinity of the point measured
relatlve to the velocity at the point or on the space derivatives of
the velocity. In the region close to the wall the turbulence l1s assumed
dependent on quantities measured relative to the wall, that is, u and
y.1 Dimensional snalysils then gives, for the region close to the wall

(y+ < 28),

€ = nZuy (5)

?here t?e constant n has the experimentally determined value 0.109
ref. 4).

11t was found in reference 8 that in the region very close to the
wall e appears to be a function also of kinematic viscosity, but the
effect of that factor becomes important only at Prandtl numbers appre-
ciably greater than 1.0.
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In the region at a distance from the Wall_(yf > 26), ¢ 1s assumed
to be dependent on the relstive wvelocities in the neighborhood of the
point. From & Taylor's series expansion for u as & function of ¥y
and =z,

e gl 3% du d%u %
i RS - - R

where y and 2z are measured In normal directions in the cross sec-
tion of the passage. In the case of flow in a tube or between parallel
plates, the derivatives in the z-direction are zero because the velocity-
gradient lines are straight lines normal to the wall. (A velocity-
gradient line is & line which at each point is normal to a constant-
velocity line.) In an eccentric annulus the velocity-gradient lines
near the wall also are normal to the surface, but they are usually
curved in the center portion of the passage. Inasmuch as the greatest
changes of velocity with respect to distance take place in layers near
the wall, the effect of the derivatives with respect to 2z will be neg-
lected. It seems reasonsble to expect that near the center of the flow
passage the effect of the derivatives with respect to 2z would be to
increase the turbulence and flatten the profile in that region. However,
the normal turbulent profile (derivatives with respect to 2z absent) is
already very flat in that reglon, so that the increased turbulence should
not produce significant changes in the values of the velocities. There-
fore, the expression for e for ¥yt > 26, obtained by using dimensionsl
analysis, and with only the first two derivatives with respect to ¥y con-
sidered, is 3

_ .2 !duzgz} :

" Ta2u/ay?)2 (6)

vhere x has the experimental value 0.36 (ref. 4). This is von Kdrmén's
expression (ref. 1).

Further assumptions. - In order to integrate equations (3) and (4},
the following assumptions are made in addition to those concerning the
eddy diffusivity (egs. (5) and (6)):

(l) The fluid properties can be considered constant and the Prandtl
nunber close to 1.0 (0.73). The heat-transfer results are therefore ap-
plicable to gases with moderate temperature differences. The analysis
could be carried out for veriable properties, but the complexdty would
be increased.

(2) The eddy diffusivities for momentum e and heat transfer €n
are equal, or a = 1. Previous analyses for flow in tubes based on this
assumption yielded heat-transfer coefficients that sgree with experiment
(refs. 2 and 5). At low Reynolds or Peclet numbers (Pe = Re Pr), «
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appears to be a function of Peclet number (ref. 9}, but for Reynolds
numbers above 15,000, as in the present analysis, o« is nearly constant

for gases.

(3) Along the lines normal to the wall, the variations of the shear
stress 1t and heat transfer per unit area g have a negligible effect
on the velcocity and temperature distributions. It 1s shown in figure 11
of reference 5 that the assumption of a linear varliation of shear stress
and heat transfer across a tube (t or gq = 0 at tube center) gives
very nearly the same velocity and temperature profiles as those obtained
by assuming unlform shear stress and heat transfer across the tube.

(4) The molecular shear-stress and heat-transfer terms in equations
(3) and (4) can be neglected in the region at a distance from the wall
(y* > 26)(ref. 5, fig. 12).

Generaslized veslocity and temperature digtributions. - Equations (3)
and (4) have been integrated using the foregoing assumptions in refer-
ences 4 and 5, where the equations are also verified experimentally for
flow and heat transfer in tubes. The results are reproduced in figures
1 and 2. These curves give the relations between ut, yt, and ++
which will be used in the following calculations for eccentric annuli.

CALCULATION OF VELOCITY DISTRIBUTIONS FOR ECCENTRIC ANNULI

For epplying the relation between ut and yt in figure 1 to the
calculation of veloecity distributions in an eccentric annulus, an iter-
ative procedure must be used, lnasmuch as the lines of velocity gradient
(lines normal to constant-velocity lines) are unknown at the outset. An
eccentric annulus, with several assumed velocity-gradient lines, is
shown in sketch (a).

Velocity-gradient lines

Line of waximum
velocities

{a)
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By using these assumed velocity-gradient lines, lines of constant veloc-
ity can be calculated, as will be shown. A new and more accurate set
of velocity-~gradient lines can then be drawn, inasmuch as they must be
normel to the constant-velocity lines. Wlth a little practice, the
velocity-gradient lines can be estimated quite accurately the first
time so that it is not usually necessary to go through the procedures
more than once or twice.

Calculation of line of maximum velocities. - After the velocity-
gradient lines have been estimated, the next step is to calculate the
line of maximum velocities shown on sketch (a)}. The velocities on ei-
ther side of this line are lower than the velocities on the line. Two
adjacent velocity-gradient lines are also shown in the sketch. The
lengths Alj and Alg are on the inner and outer cylinders, respec-
tively, and the line dividing AA} and AAz is the line of maximum
velocities. The locations of Aly and Alp must be chosen so that
straight lines drawn normal to them at their midpoints (shown dashed
in the sketch) meet at the line of meximm velocities. It will be
necessary to match the velocities at that point as calculsted from
the relation between ut and y*+ along the normels fram Al; and

Alp,. In order to write force balances on the elements Ay and Alo,
the sheaxr forces acting on Alj; and Als and the pressure forces
acting on the faces of the elements must be considered. There are no
shear forces acting on the velocity-gradient lines, because the uwormal
velocity derivatives are zero slong those lines. Writing force bal~
ances on - Al and AAs; results in

where the pressure gradient dp/dx is uniform over the annulus because
the flow is fully developed. Dividing equation (8) by equation (7)
gives .

72 A.Ll AAZ

A, B ()
From the curve of wut egainst y+ (fig. 1),

ut = F(y+)
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Applying this equation to AA; and AA,; gives

Yy Tl/p
T e o

u T /p
VT’ZF“%% ()

When these equations are evaluated at wuy = us = uy,, and equation (lO)
is divided by equation (1l1), there results

and

(12)

Elimination of t, and 7, from equation (12) by use of equations (7)
to (9) and conversion to dimensionless form give

o+
-2 )
U2m
where r{+, defined by riﬁ's S ry, is a type of Reynolds num-

K/p
ber which is assigned an arbiltrary velue. The guantity yln/&i’ that

is, a point on the line of maximum velocities, can be calculated from
equation (13) by trial. Referring to sketch (a)}, the value for yim/rl

is first assumed. Values for AA,/(Alpry), 8A;/(Alyr(), and Yom/T1
can then be calculated by measuring the areas and lengths in the sketch.
For a given value of r}™¥, then, yJ, and ¥4, (terms in parentheses,
eq. (13)) can be calculated and ufp/uf obtained from the plot of the
relation between ut and y*+ (fig. 1). If this value of u]fm/ugm does

not agree with the term on the extreme left side of equation (13), an-
other value for y'lm/rl must be tried. In this way the value for

yim/rl’ and thus a point on the line of maximum velocities, can be found.
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Calculation of lines of constant velocity. - For calculating wveloc-
ities at various points in the annulus, it is convenient to define the
Tollowing veloclity parameter:

u !
A o T (14)

uz
l "rl dp ax l‘l dp/dx
o ' —

This parameter is used in place of u"‘ because the shear stress in the
definition of ut varies with posi'blon Equation (14) can be written
in terms of quantities already known as

+

y

ut = ul i (15)
HZ.]&
3 Ty
where

| ¥y

uf = F(yY) = F(E y‘{m) (16)

where the function F is obtained from the relation between wut and
yt in figure 1. Equations (15) and (16) apply to polnts lying between
the imner cylinder and the line of maximm velocities. For points be-
tween the outer cylinder and the line of maximum velocities, these equa-
tions are replaced by

+ ot
i _u_z_yim (17)
++ Y2m
il
1

where

The quantities y'l';n, y%'m, ylm/rl’ and yZm/r are slready known from
equation (13). The relation between ult and yl/ylm or u'é"’ and

yz/yZm for a given ri'_"' can therefore be calculated aslong a given

line normsl to the inner oxr outer cylinder.
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By carrying out the calculation for various lines normsl to the
inner or outer cylinder, lines of constant velocity {(comstent utt) can
be obtained. As mentioned previously, new and more accurste veloclty-
gradient lines are next drawn so as to intersect the constant-velocity
lines at right angles. The calculation is then repeated using the new
veloclity-gradient lines.

Calculated velocity dlstributionsg. - Several velocity distributions
for eccentric annuli, as calculated by the method described, are shown
in figure 3. The calculations were carried out for an annulus having a

dismeter ratio of 3% for various eccentricities. The shape of the

constant-velocity lines indicates, as would be expected, that the great-
est velocities occur on the side where the separation of the cylinders

is greatest, and that the velocities on the side where the separation is
least are much smaller and go to zero when the cylinders touch. Although
the velocity distributions are plotted for an rI+ of 200, the constant-

velocity lires for an rI+ of 4000 have practically the same shape. The
values of UL/ub,'aV are glightly different for the two values of rI+,

but the difference is not large.

In all cages the line of maximum velocities lies closer to the
inner than to the outer cylinder, that is, 1t lies closer to the sur-
face having the smaller area.

In most cases the calculated constant-veloclity lines shown in fig-
ure 3 are very nearly normal to the velocity-gradient lines, as required.
However, in some casges, especially for the lsrge eccentricities, diffi-
culty was experienced in obtaining normal lines in some regions. Whether
this lack of normalcy is due to the fact that the iterations were not
carried far enough or to the approximate nature of some of the assump-
tions made in the analysis has not been established. However, the 4iffi-
culty occurs only in regions in which the velocity gradients are very
small, so that the error in the computed values of velocity should be
small.

FRTICTION FACTOR AND REYNOLDS NUMBER

Once the velocity distributions for the annuli have been cbtained,
friction factors and Reynolds numbers can be calculated by integrating
the distributions to obtein bulk or averasge velocities. The bulk ve-
locity between two adjacent straight lines normal to the wall (dashed
lines in sketch (a)) is Tfirst obtailned. This bulk velocity varies with
position on the inner cylinder and is glven by
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\jreA u dA
= X0 (19)

U.-b R

where AA 1s the total area between two adjacent straight lines normal
to the wall (on both sides of the line of maximum velocities). Egquation
(19) can be written in dimensionless form as

AA
\J[\ utt aa
- MO = (20)

The average bulk velocity for the whole annulus can be written as

wto=g | wa (21)

where A 1is the total area of the anmilus. The varistion of
o A — .
Uy /ub,av = ub/hb,av with angle and eccentricity is shown in figure 4.

For later comparison with heat transfer, the local friction factor

based on the shear stress on the inner cylinder and the average bulk ve-
locity is introduced and is defined as

27

- 1
f"]_ = 2 : . (-2.2)
PUp,av ‘

or, in terms of known dimensionless quantities, can be written as

Y 2 S
f. =2 (23)
gl Elr rf*cylm/rj

The average friction factor based on the shear stress is, then,

f

Al

= T dse 24
Tl,av o T ( )

where © 1is the angle at the center of the inner cylinder measured from
the line of least separation of the two cylinders Division of equation
(22) by equation (24) gives
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'
T

1 T1
== (25)
Tl,av 1l,av
The ratio Tl/Tl,av could have been obtained directly from equation (7)
and a corresponding equation for the whole annulus as
T VAL E I 2]

—

T1,av A1 Al

Curves for Tl/Tl’av or f&l/f%l,av against angle € are pre-

gented in figure 5. The curves indlcate a decrease in shear stress on

the side of the inner cylinder which is closest to the outer cylinder,

and a shear stress of zero where the cylinders touch (e = 1.0). As in
the case of the velocity distributions (fig. 4) the value of rI+ or

Reynolds number has a negligible effect on the shape of the curves. The
values for the Reynolds numbers were calculated from

o S o
w T
b,av -1 (26)

Re = rl De

which follows directly from the definition of Reynolds number. The
equivelent diameter D, 1is equal to the difference between the diame-

ters of the outer and lnner cylinders. A cross plot of figure 5 for the
point of least separstion (Tl/Tl,av against eccentricity) is given In

figure 6.

The fact that the shear stress should decrease in the region of
least separation of the cylinders can be seen directly from equation
(7), which indicates that the shear stress is proportional to AAl/AJl.

But M, ~ Alyyy,, and, hence, the shear stress is approximastely pro-
portional to Vom? which decreases as the distance between cylinders

decreases.

The friction factor for the annulus based on the pressure gradient
is defined by ’

D dp/ax (27)

iy
2
2puy gy

or, in terms of known dimensionless groups,

1
f= (28)
Z(rl/De )ug':'avz
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Friction factors based on the pressure gradient are presented in figure

7 as a Tunction of Reynolds number and ecceniricity. Comparison of these
friction factors with those for a circular tube indicates fair agreement
for the case when the cylinders are concentric. The values of the fric-
tion factor decrease as the eccentricity is increased; and, for the case
where the cylinders touch, the friction factors are approximately 70
percent of those for concentric cylinders.

HEAT-TRANSFER DISTRIBUTION ON- INNER CYLINDER
WITH OUTER CYLINDER INSULATED

With the informstion on the velocity distributions obtained in the
preceding section and with certain assumptions, the fully developed
heat-transfer distributions on the immer cylinder when the inner cylin-
der is heated (or cooled) and the outer cylinder is insulated can be
calculated. Peripheral wall temperature distributions will be calcu-
lated from these heat-transfer distributions in the next section.

The heat added between two straight lines normal to the wall per
unit length of annulus is q)Aly (see sketch (a)). It is assumed herein
that 211 this heat is used in heating the flwid element between the
straight lines (on both sides of the line of maximum velocities). That
is, the net heat transfer across the sides of tine element is assumed
small compared with that transferred through the wall. This assumption
is valid when the varistion of wall temperature is not too great and the
Prandtl number is close to or greater than unity.

Making & heat belance on the element of fluld between two straight
lines and using the foregoing assumption result in?

(s}
= pEu,C, (tb)AA (29)
For the whole annulus
— .8V
q“l av l pgu‘b,a.v p( ax )AO . (30)

2As an alternative assumption, an element bounded by veloclity-
gradient lines rather than by straight lines was used. No net heat
transfer across the velocity-gradient lines was assumed. This assump-
tion was found to give essentially the same distribution of q; as did

the assumption used in the text.
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It is shown in appendix A that, for the fully developed case,

dty/dx = dtb,av/gi vhen the heat transfer per unit area at a given
angle 6 does not very with x. Division of equation (29) by equa-
tion (50) and conversion to dimensionless form give

ot
9y . Ul o h (1)

q'l 8av u'-};l)-;,-av Ao Azl

It can easily be shown that equation (31} also gives the ratio of local
Nusselt number to averasge Nusselt number for the case of uniform cir-
cumferential wall temperature, since, for that case,

Q. g
h = t =z L (32)
t1 - b,av 1l,av ~ tb,av
and
a1 ,av
oy = k2 (53)
tl,av tb,a.v
or
h Nu 9y (34)

hov  Nugy 91,av

Equation (34) is strictly true only for the case of uniform circumfer-
ential wall temperature, because for any other temperature distribution
the temperature differences in equations (32) and (33) will not cancel.

Values of ql/ql,av (h/hav for uniform circumferential wall tem-

perature) are shown as a function of angle and of eccentricity in fig-
ure 8. As was the case with the shear stress (fig. 5), the heet trans-
fer is low on the side of the cylinder where the separation of the cyl-
inder 1s least and approaches zero when the cylinders touch. However,
comparison of figures 5 and 8 indicates that the heat transfer ap-
proaches zerc much more rapldly than does the shear stress. The same
trends ere indicated by comparison of figures 6 and 9, where Tl/Tl,av

and qi/ql av are plotted against eccentricity for the point of least
3

separation of the cylinders. Camparison of these figures indicates,
therefore, that the assumption of similarity of the shesr-stress and
heat-transfer-coefficient distributions, which is ususlly made in anal-
yses for odd-shaped passages, might give heat-~transfer coefficients in
the vicinity of a corner that sre too high. This was pointed out in
reference 10. Experimental wall temperature distributions in reference
1l indicated that in some cases the predicted coefficients were too high.
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The reason that the heat transfer decreases more rapldly than the
shear stress as the line of least separation of the cylinders is ap-
proached can easily be seen by comparison of equstions (7) and (29).
Both equations contain AA/AZl or AA1[AZl, which causes the heat
transfer or shear stress to decrease near the line of least separation.
However, the heat-transfer equation (eq. (238)) contains, in addition,
the local bulk velocity w,, which also decreases; therefore, the heat

transfer decreases more rapidly than the shear stress as the line of
least separation is approached.

WALL TEMPERATURE DISTRIBUTION

The inner cylinder of the annulus 1is assumed, in this section, to
be the outside surface of a thin-walled tube. Heat is transferred uni-
formly to the inside surface of the tube. Because of tangential conduc-
tion around the tube, the heat transfer through the outer surface to the
fluid will not be uniform and will have the distribution obtained in the
preceding section. Since the tube is thin-walled and there are no heat
sources in the tube, the heat transfer per unit area through the inner
surface is equal to q1 av’ the average heat transfer per unit area

through the outer surface to the fluid. As in the previous section,
the outer cylinder of the annulus is insulated.

In order to obtain the temperature distribution around the tube, =
heat balance is first made on an element of tube of circumferentiasl
length dil. This heat balance gives

dqt
Y,ev - U =P @] (35)

where b is the thickness of the tube and dy is the tangential heat

conduction for unit ares. Equation (35) can be written in integral
form as : ' '

1/ e 9t
4\ (l\__ v b

) @ r T dag =
ql,av 1 ql,av 1 ql av l

0] 0

- 1, (36)

where ll/r = Q and 9 is zero for 1y = 0, the point of least sepa-

ration of the cyllnders, because the wall temperature distribution is
symmetric about that point (the temperature gradient is zero). But
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dt
1
9% = - Ky §77 (37)

Substituting equation (37) in equation (36) and integrating again result
in

1 -

a bk, (t -t )
L aolag = ——t l,maxz 1 (38)

1,8v 9 ,av®1
0

vhere tl,max is the wall temperature at the point of least separation
of the cylinders. By using the values of ql/ql av obtained in the
2

preceding section, the difference between the maximum wall temperature
and the wall temperature at any angle for a given heat flux can be cal-
culated from equation (38). A dimensionless parameter containing the
difference between the maximum and the averasge wall temperatures can be
obtained by integrating equation (38), that is

bkf(tl,max - tl,av) L1 bkt(tl)max - tl)
Fs

2 2
q'l,avrl qi,avrl
0

ae (39)

- 2 -
The relstion for bkt(tl tl,av)/(ql,avrl )} can be obtalned by sub
tracting equation (38) from equation (39).

The results for the wall temperature distributions are presented
in figure 10, where bky(t; - tl,av)/(ql,avrlz) is plotted against an-

gle for various eccentricities, and in figure 11, where

bkt(tl,max - tl,av)/(ql,avrlz) is plotted ageinst eccentricity. It is
of interest that tl,max - tl,av: which 1s the quantity of greatest
practical interest, can be obtained from a single curve. That is, for
a given annulus, only two dimensionless parameters are involved. For
a glven eccentricity, tl,max - tl,av is directly proportional to the

uniform hest flux through the insgide surface of the tube.

Wall temperature distributions for verious other cases, such as
the case where the tube wall is not thin or where internal heat sources
are present in the tube wall, can also be readily calculated by using
the heat-transfer distributions in figure 8. In order to use these
distributions it is, of course, necessary that the outer cylinder be
insulated.
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NUSSELT NUMBER

For obtaining all the results thus far (wall heat-transfer distri-
butions, wall tempersture distributions, ete.), it was not necessary to
use the generalized temperature distribution in figure 2. However, it
is necessary to use that distribution for obteining the difference be-
tween wall and bulk temperstures which corresponds to & given heat flow,
that is, for obtaining the heat-transfer coefficient.

Average heat-transfer coefficient. - The average heat-transfer co-
efficient for the inner wall of the annulus is defined by :

a:
- 1,8V (
= 40)
Pev tl,a.v - t’b,av
where
1
b1 gy = 3 f t, 46 (41)
0
tu A
JO
and

ftbubdp‘

t'b,a.v = ub,avAO (43)

The aversge Nusselt number corresponding to the average hest-transfer
coefficient (eq. (40)})} can be calculated from the following equation,
which can be verified by substituting the definitions of the various

-quantities:
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1 rl/De NS
Nugv rszT *p (ub/hb,av)d(A/AO) - ’
0
Ty kry keb(ty - B ay) [ Uy A
-]5_ E;E 2 Uy, a % (44)
e : ql,avrl ,av,
where
++
++ U A =
by = ®1 u%?'dCEZ) (45)
(0]
and
+, A+
e BT Tyg/Ty
by = (46)
Iim

Equation (46) applies to the region between the imner cylinder and the
line of maximum velgcities. For the region between the outer cylinder
end the line of meximum velocities, yi, and yfﬁ are replaced by Yo,

and y%m, respectively. Asg 1n the case of velocity distributions, the

values of yt are measured along normals to the inner or outer cylinder
which extend to the line of maximum velocities. The values of t+ are
obtajned from figure 2. In the present case, where the ouber wall is
insulated, figure 2 lndicates that the temperature is uniform along the
normals drawn from the outer cylinder to the line of maximm velocities.
Since q, = 0, tz ~ t must also be zero, inasmuch as t+ ig finite. 1In

the actual case +t would vary somewhat along the llnes normal to the
outer cylinder. However, a constant + I1s consistent with the assump-
tions made in the present analysis, and the error produced is small be-
cause the actusl temperature gradients are smaell in the region between
the outer cylinder and the line of maximum velocities.

Average Nusselt numbers calculated by equation (44) are plotted
against eccentricity for a range of Reynclds numbers and for values
of the parameter krj/kib of zero and 0.0l in figure 12. The wall

temperature distributions were obtained from figure 10. For the case
vhere the cylinders are concentric, the Nusselt numbers are in good
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agreement with those obtained by the conventional Nusselt equation for
tubes or the predicted reletion for tubes in reference 5. The average
Nusselt numbers decrease with increasing eccentricity (fig. 12) as did
the friction factors (fig. 6). For the maximum eccentricity the aver-
age Nusselt numbers decrease to about one-fifth thelr values for zero
eccentricity. The curves also indicate a substantial effect of wall
tempersture distribution kr;/k.b on the Nusselt numbers. The Nusselt

mubers decrease as krl/ktb increases or as tube conductivity or

thickness decreases. The effect of peripheral wall temperature distri-
bution on average Nusselt number is not generally considered in analyses

Local heat-transfer coefficient. - The local heat-~transfer coeffi-
clent at a glven angle @ is defined as

9
h = ———————— - - 47
t1 - tp,av (47)

The local Nusselt number corresponding to h can be calculsted from

4, /a
Nu = : 1! *l,av (48)
1 (ty - tl,av)bkt kry + L
D 2 b ¥
9 av¥1 Ky YUgv

Tt can be seen from equation (48) that, for uniform circumferential wall
temperature, Nu/Wu,, = h/h, = qi/ql,av’ as mentioned previously

(rig. 8).

Values of Nu/Nuy, = h/h, for a value of kr;/kib of 0.0l are
plotted as functions of angle 6 and of eccentricity in figure 13.
These curves are strongly affected by changes in Reynolds number, in
contrast to most of the preceding results, because the second term in
the denominator of equatior (48) varies considerably with Reynolds
number, whereas the first term is nearly constent.

It might be mentioned that local heat-transfer coefficlents are not
essential to give a complete description of the heat transfer in eccen-
tric snnuli. Most quantities of interest could be obtained from the-
plots of wall heat-transfer distribution, wall temperature distribution,
and sverage Nusselt number. The local heat-transfer coefficients are
given as a matter of interest, inasmuch as most persons concerned with
heat transfer usually consider local heat-transfer coefficients rather
than locel heat-transfer rates.
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SUMMARY OF RESULTS

The followlng results were obtained from the analytical investiga-
tion of fully developed turbulent bheat transfer and flow in eccentric
annuli:

1. The maximum velocities in the annulus occurred closer to the
imner than to the outer cylinder. The locatlon of the line of maxi-
mum velocities was essentially independent of Reynolds nuber.

2. When the cylinders were not concentric, the velocities and shear
stresses in the region where the separation of the cylinders was least
were lower than the sverage values and spproached zero when the cylin-
ders touched.

3. When the inner cylinder was heated and the cylinders were not
concentric, the heat transfer to the fluid in the region vwhere the
separation of the cylinders was least was lower than the average value
and approached zero when the cylinders touched. For the case where the
cylinders touched, the heat transfer approached zero much more rapidly
than did the shear stress as the line of contact was approached.

4. The friction factors for the annulus with the cylinders concen-
tric were very slightly higher than those for a circulsr tube. As the
eccentricity increased, the friction factors decreased.

5. When the cutside surface of & thin-welled tube was assumed to
form the inner cylinder of the annulus and heat was applled uniformly
to the inside surfeace of the tube, the difference between the maximum
and average well temperatures for a given eccentricity was directly
proportional to the heat flux.

6. The average Nusselt numbers for the amnulus with the cylinders
concentric were very slightly higher than those for a tube. As the ec-
centricity increased, the Nusselt numbers decreased. The average
Nusselt number was also found to be a function of peripheral wall tem-
perature distribution.

Lewls Flight Propulsion Laboratory
National Advisory Coammittee for Aeromnsutics
Cleveland, Ohlo, March 16, 1955
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APPENDIX A

CONDITION FOR FULLY DEVELOPED HEAT TRANSFER

For fully developed heat transfer and constent fluid properties,

a1
= (A1)
T -5, - e
where h., an arbltrary heat-transfer coefficient, is independent of x.
If h, were not independent of x at a great distance from the entrance
(cyclic variations of hg excluded), the absolute value of hy would

become arbitrarily large as x increased so that for finite tempersasture
differences the absolute value of Q would become arbitrarily lasrge.

The following equations are specilsl cases of equation (Al):

Q:
—_— . _n (a2)
Ty - tb,av

q
t -t
For the case vhere the wall heat transfer per unit area is independ-

ent of x (but not of 6), equations (A2) and (A3} can be differentiated
to give the following results:

= by (A3)

d-tl _ d:l"b,aa:\r
ax T ax
dty  dby
dx . ax
or
aty, Aty gy
&= " T (Ae)

The quantity dt,/dx is therefore independent of 6 when the heat
transfer is independent of x.
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APPENDIX B

SYMBOLS

The following symbols are used in this report:

total area between inner cylinder and outer cyl-~
inder, sq ft

total aree between inner cylinder and line of max-
imum veloclities, sq ft

total area between outer cylinder and line of max-
imum velocities, sq ft

wall thickness of inner tube, It

specific heat of fluid at constant pressure,
Btu/(1b)(°F)

diameter, It
equivalent dlameter of annulus, Dy - Dy, ft
conversion factor, 32.2 ft/sec?

4y

local heat-transfer coefficient, EETTT?E;——-,
28V

Btu
(sec)(sa £t)(°F)

qi,av
2
av ” tb,av

average heat-transfer coefficient, T
1

Btu
(sec)(sq £t)(OF)

thexrmal conductivity of fluild,
Btu/(sec)(sq f£t)(°F/ft)

thermal conductivity of material of immer cylinder,
Btu/(sec)(sq £t)(°F/ft)

periphersal distance along wall, £t

static pressure, 1b/sq £t abs
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ql,a.v

H

ct ct
o

Uy,

21
rate of heat transfer from wall of inner cylinder
per unit area, Btu/(sec)(sq ft)

average rate of heat transfer from well of inner
cylinder per unit area, Btu/(sec)(sq ft)

radius, ft
temperature of fluid at a point, OF
arbitrary tempersture

local bulk temperature of fluid at given angle at
- cross section of annulus, OF

wall temperature, °F

local wall temperature of inner cylinder or tube,
OF

maximm wall temperature of inner cylinder or +tube,
OF

time-averaged velocity parallel to wall at a point,
ft/sec .

local bulk velocity at given angle at cross section
of annulus, ft/sec

velocity at a point on line of maximum velocities,
£t /sec

axial distance along annulus, £t
normal distance from wall, Tt
value of y; at u=w, ft.
velue of y, &t u=1u,, ft

coefficient of eddy diffusivity for momentum,
sq ft/sec

coefficient of eddy diffusivity for heat,
8q ft/sec

angle made with center of inner tube, radians
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© absolute viscosity of fluid, (1b)(sec)/sq ft
o mass density, (1b)(sec2)/ft%
T shear stress in fluld, 1b/sq ft

Dimensionless quantities:

bkt(tl,max B tl;av)

wall-temperature-distribution parameter where an-

ql,avrlz gle is zero
bkt(tl - % av)
é wall-temperature~distribution parsmeter
a. r
l,av 1
e eccentricity parameter, distance between centers
of cylinders divided by ro = Iy
-0, &
f friction factor,
2pu2
b,av
ZTl
fr friction factor, >
1 PUp ,av
hDg
Nu Nusselt number based on local heat transfer,-jg-
Nugy Nuiselt number based on average heat transfer,
av-e
k
n constant, 0.109
Pr Prandtl number, cpug/k
" _
Re Reynolds number, P BDe

/-I‘l dp/dx i
rit P

1 inner-tube radius parameter, __—_E7E——_— Ty
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£+

('bo - t)QPOSTo

qo‘\/'”o; Po
1

+
bulk~temperature parameter, t}"_“' u—-FF -A—)

temperature parameter,

AA

%, - t)e.gr
tempersature parameter, 1 —i L

temperature parameter,

velocity parameter,

% ___
‘VTo/ Po

veloeity parameter, —
~r, dp/dx
p

AA

! u dA
bulk-veloclity parameter,

DA

bulk-velocity perameter, - W, dA

==

U3

1/°

veloclty parameter,

velocity parsmeter,
Ta/P

%

u‘]'_" evaluated at line of maximm velocities

>

a3
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u%'m _ u.'a" evaluated st line of maximum velocitles

+ . % l/p

¥i wall-distance parameter, __FVFT- ¥y

+ Y Tz/ p

Yo wall-distance parameter, =70 Yo

y+lm y'J*_' evalugted at line of maximum velocities

y;n y'zl' evaluated at line of maximum velocities

o ratio of eddy diffusivity for heat transfer to

eddy diffusivity for mementum transfer, e /e

. Ka’.mén constant, 0.36

Subscripts:

a arbitrery

o] pertaining to a wall

1 pertalning to ipner cylinder

2 pertaining to outer cylinder
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Figure 1. - Generalized velcocity distribution for fully developed turbulent flow in

smooth tubes (ref. 10).
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FLine of
maximum
velocitles

(b) Eccentricity perameter, 0.8.

Fig’u;e 3. - Predicted veloeity distributions for an annulus. Reynolds number, 20,000;
rofr iy 3.5. ’
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(d) Eccentricity parameter, 1.0.

Figure 5. - Concluded. Predicted veloclty distributions for an annulus.
pumber, 20,000; rz/fl, 3.5.
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Figure 6. - Predicted variation with eccentricilty parameter of
shear stress on inmer cylinder at point of least separation.
rz/rl, 3.5; Reynolds number, 20,000 and 600,000.
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Figure 2. - Predicted veriation of heat transfer from inner
cylinder at point of least separation with eccentricity
parameter. rz/rl, 3.5; Reynolds number, 20,000 snd 600,000.

Outer cylinder insulated.
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Figure 10. - Predicted veriation of wall tempersture on inner tube with angle 8 for various values of
eccentricity parameter. Constant heat flux at inside wall of inner tube; outer cylinder of aanulus

insulated; rp/r7, 3.55 Reynolds number, 20,000 and 600,000.
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Figure 11. - Predicted variation of maximum temperature

difference on 1inside tube with eccentricity parameter.
Constant heat flux at inside wall of lnner tube; outer
cylinder of annulus insulated; rz/rl, 3.5; Reynolds
number, 20,000 and 600,000.
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Figure 12. - Predicted varistion of average Nusselt number with Reynolds number
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